skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van Benthem, Klaus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anisotropic growth of nanostructures from individual nickel nanoparticles was observed during in situ heating experiments in an environmental scanning electron microscope (ESEM) at 800°C under water vapor atmosphere. The morphology of nanostructures exhibited one directional growth with rates ranging below 1.8 nm/s. Energy dispersive X‐ray spectroscopy and selected area electron diffraction confirmed NiO stoichiometry of the growing nanostructures. Variations of the oxygen partial pressure during ex situ annealing and in situ ESEM heating experiments elucidate that anisotropic NiO growth is energetically favored in areas where the local surface energy density is relatively high. Growth of NiO nanostructures was absent in dry air and dry nitrogen environments and required the presence of water vapor. The results of this study suggest that the manipulation of surface energy prior to exposure to water vapor at elevated temperatures can prevent unwanted oxide nanostructure growth. 
    more » « less